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Annular finite elements for the computation of second and higher order harmonics

modes of bladed rotating discs are developed. The elements take into account

gyroscopic effect and stiffening due to centrifugal and thermal stresses (the latter not

present in arrays of blades). The displacement field is expressed by a truncated Fourier

paper is the generalization of a previous study limited to zero- and first-order

harmonics and deals only with second and higher order harmonics modes that are

uncoupled from the modes involving the behavior of the rotor as a whole. Several cases

have been studied to verify the accuracy of the disc and array of blades elements.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Many rotors, like those of turbomachinery, can be modeled as composed of shafts, discs and arrays of blades. In
elementary rotordynamics, the bladed discs are assumed to be rigid bodies, contributing to the inertia of the rotor but not
to its compliance. However, there are cases like, for instance, circular saws [1] and some turbomachines [2–5], in which the
deformation of the discs and possibly of the blades must be accounted for since the rigid body assumption does not allow a
detailed dynamic analysis. Sometimes, the dynamic behavior of the blades influences the whole system [6], possibly giving
way to dangerous phenomena, such as instability [7]. When the compliance of the discs is important, centrifugal and
thermo-elastic loading due to temperature gradients can affect the dynamic behavior and must be taken into account. The
dynamics of a bladed disc can be studied without any problem by using any commercial FEM code if no account is taken for
its rotation, but things become more complex when gyroscopic and centrifugal stiffening effects due to rotation must be
considered. The latter effect can be accounted for by using the geometric stiffness matrix as in [2,3,8] for discs and in [6,9]
for arrays of blades. An effect similar to centrifugal stiffness can be due to temperature gradients: it can be accounted for
using the geometric matrix as well [8]. Choi and Lee [10] have also studied the transient thermo-elastic behavior of discs,
obtaining a useful tool to improve the performance of the discs.

The blades can be modeled as an array of beams attached to the outer edge of the disc and this has been successfully
done for studying the interaction between discs and blades, but this approach does not allowed to predict the local modes
of the blades [11]. Genta and Tonoli [9] developed a model of coupled disc-blade assemblies which includes Coriolis effects
due to rotation but the modes related to second and higher order harmonics of the array of blades have still been neglected.
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Nomenclature

A(r) blade section area at radius r

A,B,C,D shape function components
C original coordinate
D disc element elastic properties
E Young’s modulus
Fr,i centrifugal force of each blade
G gyroscopic matrix
h(r) thickness of disc at radius r

Iv, Iw section area moment of inertia
k elastic stiffness matrices
K elastic stiffness matrix
m mass matrices
M mass matrix
n number of harmonic terms
nuðwÞ radial shape functions
nvðwÞ tangential shape functions
nwðwÞ axial shape functions
N number of blades
P coordinate vector of point P

Pro radial force per unit o
q element d.o.f.
Q element complex d.o.f.
ri,r0 inner and outer radius
Rk rotation matrices

Ti kinetic energy
Ui potential energy
ei generalized strain vector
y angular location in disc
n Poisson’s ratio
r element density
s element stress
w non-dimensional radius
o spin speed of the shaft
c pretwist angle of the blade

Subscripts

c circumferential
e elastic component
g geometric component
i i th-order harmonic component
ic, is i th-order harmonic functions
inp,i in-plane components
j,i i th-order harmonic of jth blade
outp,i out-of-plane components
r radial
T due to temperature gradient
uu, uv, vv,ww in-plane and out-of-plane
o due to rotation speed
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Chun and Lee [12] demonstrated that the stagger angle of the blades determines an inertial coupling between the in-
plane and out-of-plane of the disc motion and that only the zero and one nodal diameter are coupled to the dynamics of
the shaft. Genta and Tonoli [8,9] use a complex coordinates approach to derive the equation of motion of disc and array of
blades finite elements that takes into account the blades’ stagger angle, but considered only the modes of the disc that are
coupled with those of the rotor as a whole and neglected second and higher order harmonics.

Tomioka et al. [13] model the connection between flexible discs and arrays of blades by introducing a spring element at
the interface, while Genta and Tonoli [9] use a disc-array of blades transition element to model the connection. They
introduce also a shaft–disc transition element to describe the interface between the shaft and the discs [8].

Ruzicka and Hodges [14] demonstrate that shortcomings exist when performing modal reduction for rotor blades using
classical, displacement-based finite elements and that mixed finite element should be instead in such procedure.

Dynamic instability of rotating discs in contact with stationary pads have been shown for circular saws and for disc
brakes; the latter case is studied using the finite element method by Kang [15] taking into account both gyroscopic and
centrifugal stiffening effect. It is highlighted that the friction coefficient has an important role in the in-plane torsional
vibration of the disc.

Lim [16] introduces a harmonic disc element for the case of disk drive spindle systems to study the flexural vibrations
and coupling between the shaft and disc. Structural flexibility is taken into account for each component, but the centrifugal
effect is only considered in the discs. Such finite element models are assembled and applied to the case of HDDs and the
effectiveness and accuracy of the proposed approach is verified.

It is important to study the higher order modes of the disc and array of blades even if they are not coupled to the shaft
dynamics since they can be excited at a resonance and compromise the safety of the rotor system. The aim of the present
paper is to generalize the finite element formulation taking into account both the gyroscopic effect and centrifugal
stiffening to study the flexural behavior in the flexible discs and array of blades which have already been introduced in
[8,9] to include also disc and blades modes that are uncoupled with the rotor modes.

The basic approach is what usually defined as 11
2 dimensional approach, i.e. the shaft is modeled as a beam (one-

dimensional solid) and the discs and the arrays of blades are assumed to be annular elements with displacements
developed in Fourier series along the angle.

The discs are connected to the shaft and a shaft–disc transition element is used as interface, while blades are assumed
to be attached to the outer diameter of the discs and the interface is simulated by a disc–array of blades transition element.
The element matrices are developed by a Lagrange approach and written in the complex coordinate described in Refs.
[17,18]. The element matrices are programmed in the existing FEM code DYNROT [19]. The model is validated in different
cases comparing its results with analytical ones taken from the literature and numerical simulations performed using
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commercial codes. The accuracy of the dynamic behavior of the second and higher order harmonics disc and array of blades
elements have been checked.
2. Second and higher order harmonics disc element

2.1. Element kinematics

The element is modeled as a two-dimensional annular object, with all properties concentrated at its mid-plane. In
addition, it is assumed to be perfectly balanced, i.e. its center of mass lies in its geometrical center and its principal axis
of inertia coincides with its rotation axis. However, a static and couple unbalance can be added into the equations of
motion later.

The deformation of the bladed disc is made by a rigid body configuration deviation and a compliant body deformation.
During the deformation, the mid-plane of the disc is assumed to maintain the same orientation in space of a rigid body
attached to the relevant shaft cross-section, while the disc exits its mid-plane owing to its flexibility.

The generalized coordinates can be defined with reference to the frames shown in Fig. 1. Frame OXYZ is the inertial
frame with the origin at O and Z-axis coinciding with the rotor rotation axis in its undeformed position; frame Ox*y*Z is the
rotating frame, axes x* and y* rotate in the XY-plane at a rotating speed o (at constant speed condition it is rotated by angle
ot); frame CXuY uZu has its original point C located at the center of the shaft in the disc attachment cross-section, but its axes
remain parallel to axes X,Y,Z. The deformed position of a generic point P on the disc can be defined by the following
rotations:

Rotate the axes of CXuY uZu frame about the Xu-axis by an angle Fx until Y u-axis enters the mid-plane of the disc in its
deformed configuration; let the axes so obtained be yx and zx and the rotation matrix expressing the coordinates of P in
CXuY uZu frame from those referred to CXuyxzx be R1.

Rotate frame CXuyxzx about yx-axis by an angle Fy until Xu-axis enters the mid-plane of the disc in its deformed
configuration; let the axes so obtained be xy and zy and the rotation matrix be R2.

Rotate frame Cxyyxzy in xyyx plane through an angle Fzþot, define the so-obtained frame as Cxyz, which is fixed to the
mid-plane of the disc and will be referred to as the rotating and whirling frame, and the rotation matrix refer to the
rotating about z-axis can be split into two terms R3 (rotation Fz) and R4 (rotation ot). The expressions for the above-
mentioned rotating matrices are defined in Refs. [8,18].

Let u, v and w be, respectively, the radial, tangential and axial displacement components of a generic point whose
undeformed position P0 is defined by radius r and angle y in the reference frame Cxyz defined above that follows both the
rotation and the deformation of the shaft. The position of point P after deformation is

ðP�OÞ ¼ ðC�OÞþ
Y4

k ¼ 1

Rkðfr 0 zgTþfu v wgTÞ, (1)

where Rk are rotation matrices mentioned above and they are functions of the angles characterizing the rigid body
displacement and of the rotation ot.

For second and higher order harmonics, the displacement field is uncoupled with the flexural behavior of the rotor and
thus rigid body motions need not be included in the formulation. Consequently, the deformation of point P in the inertial
reference OXYZ (shown in Fig. 2) related to the i th-order harmonics can be expressed by neglecting the displacement
ðC�OÞ in Eq. (1).
Fig. 1. Reference frames of rotor.



Fig. 2. Sketch of the disc element; ri, r0: inner and outer radius of annular disc element; hi, h0: thickness of the annular disc element at inner and outer radius.
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2.2. Disc element shape functions

An annular finite element with a thickness varying linearly with the radius is shown in Fig. 2. A non-dimensional radial
coordinate w that goes from 0 at the inner radius to 1 at the outer one is defined. The thickness h(r) and the non-
dimensional radius w are thus defined as

w¼ ðr�riÞ=Dr, h¼ hiþwDh: (2)

The displacement field within the element can be expressed as a trigonometrical series in the angular position y:

uðw,y,z,tÞ ¼ u0þ
Xn

i ¼ 1

ðuiccos iyþuissin iyÞ,

vðw,y,z,tÞ ¼ v0þ
Xn

i ¼ 1

ðviccos iyþvissin iyÞ,

wðw,y,z,tÞ ¼w0þ
Xn

i ¼ 1

ðwiccos iyþwissin iyÞ, (3)

where n is the number of harmonic terms. The coefficients of the harmonic terms contributing to the in-plane
displacement are uic, uis, vic and vis, while those contributing to the out-of-plane displacement are wic and wis.

It is already noted the dynamic behavior of the zero- and first-order harmonics was studied in Ref. [8]. This paper is
focused only on the second and higher order harmonics which are uncoupled from flexural, axial and torsional behavior of
the rotor. Furthermore, the orthogonality of the harmonic contributions of the Fourier series expansions of Eq. (3) implies a
decoupling between each harmonic. The displacement field of each harmonic can thus be expressed as

uiðw,y,tÞ ¼ uiccos iyþuissin iy
viðw,y,tÞ ¼ viccos iyþvissin iy
wiðw,y,tÞ ¼wiccos iyþwissin iy

8><
>: for iZ2: (4)

As usual in the circular plate’s theory, the coefficients of the harmonic terms are functions both of the non-dimensional
radius and of time

uicðw,tÞ, uisðw,tÞ, vicðw,tÞ

visðw,tÞ, wisðw,tÞ, wicðw,tÞ
for iZ2: (5)

As usual in the FEM, the matrices of the shape functions are introduced, and the dependence of the displacements on the
radius and the time can be expressed as

uicðw,tÞ ¼ nuðwÞquxðtÞ, uisðw,tÞ ¼ nuðwÞquyðtÞ,

vicðw,tÞ ¼ nvðwÞqvxðtÞ, visðw,tÞ ¼ nvðwÞqvyðtÞ,

wicðw,tÞ ¼ nwðwÞqwxðtÞ, wisðw,tÞ ¼ nwðwÞqwyðtÞ: (6)

The shape functions for the in-plane displacements u and v are assumed to be linear; while cubic ones are adopted for the
out-of plane displacement w. In terms of the non-dimensional coordinate w they are

nuðwÞ ¼ nvðwÞ ¼ ½1�w w�, nwðwÞ ¼ ½Ari BDr Cr0 DDr�, (7)

where

A¼ 2w3�3w2þ1, C ¼ 2w3�3w2,

B¼�w3þ2w2�w, D¼�w3þw2, (8)

where A,B,C,D are shape functions similar to those used in the ‘‘simple Timoshenko beam’’ as reported in Ref. [8].
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The generalized coordinates used to express the deformation of the disc deflection field are thus

qux ¼ fux1 ux2g
T, quy ¼ fuy1 uy2g

T,

qvx ¼�fvx1 vx2g
T, qvy ¼ fvy1 vy2g

T,

qwx ¼ fjy1 bvy1 jy2 bvy2g
T, qwy ¼�fjx1 bvx1 jx2 bvx2g

T: (9)

Angles jij and bij are defined in Ref. [8].
Two nodes are defined on each disc element when dealing with second and higher order harmonics: nodes 1 and 2,

which are located at the inner and the outer radius of the element, respectively. The total number of the real degrees of
freedom of the element is 16; nodes 1 and 2 have 8 each. If complex coordinates are introduced into the equations of
motion, 8 complex flexural degrees of freedom will result.

2.3. Equations of motion of the element

The generalized coordinates used to approximate the displacements of nodes 1 and 2 describe the deflections of
the element from its rigid configurations. The equations of motion of the element are obtained from the expressions of the
kinetic and the potential energies and following a Lagrangian approach.

2.3.1. Kinetic energy

The kinetic energy is computed by neglecting the terms related to the deviation of the rigid configurations under the
assumption that the thickness of the disc is small compared to the radial dimensions and the shear deformation is
negligible.

Pi denotes the displacement of a point in the mid-plane (z=0) of the element relative to the initial reference frame, the
kinetic energy can be written as

Ti ¼
1

2

Z r0

ri

Z h=2

�h=2

Z 2p

0
r _PT

i
_Pir dr dz dy, (10)

where r is the density of the material of the disc element.
The harmonic terms are composed of two uncoupled parts, the in-plane displacement u, v and the out-of-plane term w.

So the kinetic energy splits into two independent contributions:

Ti ¼ Tinp,iþToutp,i: (11)

The in-plane and out-of plane contributions to the kinetic energy can be expressed as equations of the shape function and
element degrees of freedom, respectively, as

Tinp,i ¼
1
2½o

2ðqT
uxminp,iquxþqT

uyminp,iquyþqT
vxminp,iqvxþqT

vyminp,iqvy

�2qT
uxminp,iqvx�2qT

uyminp,iqvyÞþ2oðqT
uyminp,i _qux�qT

vyminp,i _qux

�qT
uxminp,i _quyþqT

vxminp,i _quy�qT
uyminp,i _qvxþqT

vyminp,i _qvxþqT
uxminp,i _qvy

�qT
vxminp,i _qvyÞþ _q

T
uxminp,i _quxþ _q

T
uyminp,i _quyþ _q

T
vxminp,i _qvxþ _q

T
vyminp,i _qvy�,

Toutp,i ¼
1
2½o

2ðqT
wxmoutp,iqwxþqT

wymoutp,iqwyÞþoð2qT
wymoutp,i _qwx�2qT

wxmoutp,i _qwyÞ

þ _qT
wxmoutp,i _qwxþ _q

T
wymoutp,i _qwy�: (12)

Matrices minp,i and moutp,i are given by the integrals:

minp,i ¼ 2p
Z r0

ri

rrhnT
unu dr¼ 2p

Z r0

ri

rrhnT
vnv dr,

moutp,i ¼ p
Z r0

ri

rrhnT
wnw dr: (13)

2.3.2. Potential energy

Contributions to the potential energy due both to the elastic stresses in the material (Ue,i) and to the ‘geometric effect’
(Ug,i) have been considered, as explained in Ref. [8]:

Ue ¼Ue,iþUg,i: (14)

If the thickness of the disc is small, it can be considered as a rotating Kirchhoff plate and transverse shear deformations can
be neglected. The expression of elastic energy of i th-order harmonics due to bending is

Ue,i ¼
1

2

Z r0

ri

Z 2p

0
eT

i Deir dr dy¼Ueinp,iþUeoutp,i: (15)
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The generalized strain vector is obtained from the displacement field within the disc; it can be split into the two
contributions due to in-plane and out-of-plane deformation

ei ¼
einp,i

eoutp,i

( )
, (16)

where

einp,i ¼

qui

qr
ui

r
þ

1

r

qvi

qy
1

r

qui

qy
þ

qvi

qr
�

vi

r

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

, eoutp,i ¼

q2wi

qr2

�
1

r

qwi

qr
þ

1

r

q2wi

qy2

 !

2
1

r2

qwi

qy
�

1

r

q2wi

qyqr

 !

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
: (17)

Matrix D is used to represent the element elastic properties as functions of the disc thickness and material characteristics;
it can be split into two separate terms, too. Both can be computed under the assumption that the sections perpendicular to
the radial directions remain plane after deformation and the effect of shear deformation is negligible:

Dinp ¼ einpd, Doutp ¼ eoutpd, (18)

where

einp ¼ Eh=ð1�u2Þ, eoutp ¼ Eh3=12ð1�u2Þ, (19)

account for the in-plane and out-of-plane elastic behavior, E is Young’s modulus, and

d¼

1 u 0

u 1 0

0 0 ð1�uÞ=2

2
64

3
75: (20)

By substituting the discretized displacement equations and shape functions into Eq. (15), the elastic potential energy can
be expressed as

Ueinp,i ¼
1
2ðq

T
uxkuu,iquxþqT

uykuu,iquyþqT
vxkvv,iqvxþqT

vykvv,iqvyþqT
uxkuv,iqvxþqT

uykuv,iqvyÞ,

Ueoutp,i ¼
1
2ðq

T
wxkww,iqwxþqT

wykww,iqwyÞ, (21)

where

kuu,i ¼ p
Z r0

ri

einp

2r2
f½2þ i2ð1�uÞ�nT

unuþ2ur½nT
unuuþðnuuÞ

Tnu�þ2r2ðnuuÞ
Tnuugr dr,

kvv,i ¼ p
Z r0

ri

einp

2r2
f½2i2þð1�uÞ�nT

unu�rð1�uÞ½nT
unuuþðnuuÞ

Tnu�þr2ð1�uÞðnuuÞ
Tnuugr dr,

kuv,i ¼ ip
Z r0

ri

einp

2r2
½ð3�uÞnT

unu�rð1�3uÞðnuuÞTnuu�r dr,

kww,i ¼ p
Z r0

ri

eoutp

r4
f½i4þ2i2ð1�uÞ�nT

wnw�r½i2þ2i2ð1�uÞ�½nT
wnuwþðnuwÞ

Tnw�

þr2½1þ2i2ð1�uÞ�ðnuwÞTnuw�ui2r2½nT
wn00wþðn

00
wÞ

Tnw��ur3½ðnuwÞ
Tn00wþðn

00
wÞ

Tnuw�þr4ðn00wÞ
Tn00wgr dr:

(22)

The geometric potential energy Ug,i is generated by the effect of centrifugal stiffening and thermal stresses in the disc. The
restoring force due to centrifugal and thermal stresses is very important if the disc is like a membrane, i.e. has a low
bending stiffness. This contribution can be expressed in the form

Ug,i ¼
1

2

Z r0

ri

Z 2p

0
sr

qwi

qr

� �2

þsc
1

r

qwi

qy

� �2

þsr
qvi

qr

� �2

þsc
1

r

qui

qy

� �2
" #

rh dr dy: (23)

The radial and circumferential stresses sr and sc can be evaluated by using, for example, the Manson method [20]. A
decoupling similar to the kinetic and elastic energy occurs between in-plane and out-of-plane degrees of freedom and the
potential energy of i th-order harmonics can be written as

Ug,i ¼Uginp,iþUgoutp,i: (24)
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Integrating the equations, the geometric potential energy is obtained:

Uginp,i ¼
1
2ðq

T
uxkgu,iquxþqT

uykgu,iquyþqT
vxkgv,iqvxþqT

vykgv,iqvyÞ,

Ugoutp,i ¼
1
2ðq

T
wxkgwc,iqwxþqT

wykgwc,iqwyþqT
wxkgwr,iqwxþqT

wykgwr,iqwyÞ: (25)

The stiffness matrices are given by the integrals of the shape functions

kgv,i ¼ p
Z r0

ri

srhrðnuvÞ
Tnuv dr, kgu,i ¼ i2p

Z r0

ri

sch

r
nT

unu dr,

kgwr,i ¼ p
Z r0

ri

srhrðnuwÞ
Tnuw dr, kgwc,i ¼ i2p

Z r0

ri

sch

r
nT

wnw dr: (26)

2.3.3. Element matrices

Second and higher order harmonics are uncoupled from the flexural behavior of rotor. If no external force acts on the
element, the equations of motion for the second and higher order harmonics have the same form as in Ref. [8]:

Minp,i
€Q inp,i�ioGinp,i

_Q inp,iþðKinp,iþo2Koinp,i�o2Mniinp,iÞQ inp,i ¼ 0,

Moutp,i
€Q outp,i�ioGoutp,i

_Q outp,iþðKoutp,iþo2Kooutp,i�o2Mnioutp,iÞQ outp,i ¼ 0: (27)

The in-plane and out-of-plane motions can be assembled in vectors as

Q inp,i ¼
quxþ iquy

qvxþ iqvy

( )
ð4�1Þ

, Q outp,i ¼ fqwxþ iqwygð4�1Þ: (28)

The element mass, gyroscopic, centrifugal stiffening, thermal gradients and stiffness matrices are obtained from the
element kinetic and potential energies through Lagrange’s equations

Minp,i ¼
minp,i 0

0 minp,i

" #
, Moutp,i ¼moutp,i,

Ginp,i ¼ 2i
minp,i �minp,i

�minp,i minp,i

" #
, Goutp,i ¼ 2imoutp,i,

Mniinp,i ¼ i2
minp,i �minp,i

�minp,i minp,i

" #
, Mnioutp,i ¼ i2moutp,i: (29)

The stresses in the radial and tangential directions can be computed from centrifugal and thermal loadings, the latter is
independent of the rotational speed. Thus the stress field can be written as

sr ¼ srTþo2sro, sc ¼ scTþo2sco,

where sr and sc are the stresses in radial and circumferential direction of the disc, sro and sco are the centrifugal stresses
due to a unit rotational speed, o¼ 1 rad=s, while srT and scT indicate the stress field due to the thermal gradients. In this
case, the stiffness matrices can be split as

kg,i ¼ kgT ,iþo2kgo,i:

The stiffness matrices can be obtained by taking into account the arrangement of vector (28):

Kinp,i ¼

kuu,iþkguT ,i �kuvT ,i

�kT
uvT ,i kvv,iþkgvT ,i

" #
, Koinp,i ¼

kguo,i 0

0 kgvo,i

" #
,

Koutp,i ¼ kww,iþkgwcT,iþkgwrT ,i, Kooutp,i ¼ kgwco,iþkgwro,i: (30)

The elements are implemented with a numerical integration routine based on a four point Gauss procedure since the
expressions of the matrix terms are difficult to achieve by analytical integrations.

2.4. Shaft–disc transition element

Beam and disc elements cannot be directly linked to the present annular disc element and the compatibility of the
displacement at the disc–shaft interface must be insured. A suitable transition element has thus been developed which is
provided with two nodes, the first located at the inner radius of the transition element (outer radius of the beam) describes
the interface between the beam and the disc, and the second located at the outer radius of the element. The two nodes have
2 complex degrees of freedom and 4 complex degrees of freedom for flexural behavior, respectively.
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The matrices for the shaft–disc transition element have been obtained from those described above for the disc element
by just deleting all rows and columns linked with the degrees of freedom at node 1. This corresponds to constraining the
displacements of the point at the inner radius of the element as a rigid body motion.
3. Second and higher order harmonics array of blades element

The main assumptions to analyze the array of blades are that all blades are equal, are aligned along the radial direction
and their shear center coincides with the center of mass of each section. The number of blades must be 3 or larger, so that
the assumption that the array is axisymmetric is satisfied [9]. Another assumption is that the blades are modeled as Euler–
Bernoulli beams, i.e. that shear deformations and rotational inertia of the cross-sections can be neglected.

A typical cross-section of a blade perpendicular to the radial direction is shown in Fig. 3. G is the mass center of the
cross-section while T is the shear center of it.

The array is modeled as a two-dimensional object, all its properties concentrated in the mid-plane of the blade, like for
the disc element. The deformation of the array is referred to the same reference plane of the disc that is a plane
perpendicular to the inflected deformation of the shaft passing through the disc–shaft attachment. The array exits this
reference plane owing to its flexibility.

Let uj, vj, and wj be, respectively, the radial, tangential and axial displacement components of a point Pj of a section of
the jth blade taken at a radius r. Pj is the coordinate in an inertial reference of point P expressed as

ðPj�OÞ ¼ ðC�OÞþ
Y4

k ¼ 1

Rkðfr 0 0gTþfuj vj wjg
TÞ, (31)

where C is the coordinate of the shaft–disc attachment point, Rk are the rotation matrices as a function of angle of the rigid
body motion as reported in Ref. [9].

The second and higher order harmonics are uncoupled with the flexural behavior of the rotor as a whole while being
important in the study of the local modes of the bladed disc. Rigid body motions can thus be neglected since they are
uncoupled and do not enter the formulation of the present model. According to these indications, the deformation in the
initial frame of point can be represented as the same form as Eq. (3).
3.1. Element shape functions

To define the shape functions approximating the deformations of the array of blades, the latter has been subdivided into
annular elements. A non-dimensional radius w has been defined in the same way as seen for the disc element. A, I2 and I3

are the area of the cross-section of each blade and its area moments of inertia about the principal inertia axis (u2, u3 in
Fig. 3) of the cross-section. They are, together with angle c, linear functions of the non-dimensional radius w. The
displacements uj, vj, wj are then approximated by means of a truncated Fourier’s series in the angular coordinate yj:

ujðw,yj,z,tÞ ¼ u0þ
Xn

i ¼ 1

ðuiccosiyjþuissin iyjÞ,

vjðw,yj,z,tÞ ¼ v0þ
Xn

i ¼ 1

ðviccosiyjþvissin iyjÞ,
Fig. 3. Blade Cross-section; v, w: tangential and axial directions; u2: axis of minimum principal moment of inertia; u3: axis of maximum principal

moment of inertia; c: pretwist angle of the blade.
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wjðw,yj,z,tÞ ¼w0þ
Xn

i ¼ 1

ðwiccos iyjþwissin iyjÞ: (32)

The coefficient of the various harmonics displacement uic,s and vic,s refer to the in-plane displacement while wic,s are related
to the out-of-plane displacement.

The dynamic behavior of the zero- and first-order harmonics of array of blades element have already been studied in
Ref. [9], and in this paper only the second and higher order harmonics are dealt with. Due to the orthogonality of
trigonometric functions, all harmonics contributions are decoupled with each other, and the use of truncated Fourier’s
series expansion will not lead to any major approximations. Here the terms for each higher order harmonics are listed:

uj,iðw,yj,tÞ ¼ uiccos iyjþuissiniyj

vj,iðw,yj,tÞ ¼ viccosiyjþvissin iyj

wj,iðw,yj,tÞ ¼wiccosiyjþwissin iyj

8><
>: for iZ2: (33)

The use of shape functions to eliminate the displacement dependence on yj of the displacement field u, v, and w lead to the
unknown functions in the same form as Eq. (5), which also can be approximated by shape functions written as Eq. (6).

The shape functions for the in-plane radial and out-of-plane deformations are the same as those used in the disc element,
expressed in Eq. (7), while the in-plane circumferential deflection of the blade element is coupled with the out-of-plane
deformation and can be expressed with the same cubic polynomial shape functions as the out-of-plane shape functions.

The generalized coordinates used to express the deflections of the array of blades coupled to the flexural behavior are

qux ¼ fux1 ux2g
T, quy ¼ fuy1 uy2g

T,

qvx ¼�fvx1 bwx1 vx2 bwx2g
T, qvy ¼ fvy1 bwy1 vy2 bwy2g

T,

qwx ¼ fwx1 bvx1 wx2 bwx2g
T, qwy ¼�fwy1 bvy1 wy2 bvy2g

T: (34)

Two nodes are defined on the element, one at the inner radius of the element and the other at the outer radius. The total
number of the real degrees of freedom of the element is 20; nodes 1 and 2 have 10 each. If complex coordinates are
introduced into the equations of motion, 10 complex flexural degrees of freedom will be used.

3.2. Equations of motion of the element

The generalized coordinates used to approximate the displacements describe the deflections of the element from the
rigid-body configuration. The equations of motion of the element have been written in the same way as already seen for
the disc element.

3.2.1. Kinetic energy

The kinetic energy has been computed taking into account the contributions due to the rotational inertia of the array
while the contributions of the rotational inertia the cross-section of a single blade is neglected when considering the
deviations from the rigid-body configuration.

Let Pj,i denoting the displacement of the mass center of the jth blade at the radius r, relative to the inertial reference. The
kinetic energy is

Ti ¼
1

2

XN

i ¼ 1

Z r0

r
i

rAðrÞ _P
T

j,i
_P j,i dr, (35)

where r is the density of the material of the blades and A(r) is the cross-section of the blade at radius r.
In differentiating with respect to time, angle yj must be considered as a function of time. Owing to the orthogonality of

the harmonic functions, a decoupling between the modes of the various orders occurs. The kinetic energy can be split into
in-plane and out-of-plane contributions:

Ti ¼ Tinp,iþToutp,i: (36)

The in-plane and out-of plane contributions to the kinetic energy can be expressed as functions of the shape function and
element degrees of freedom as

Tinp,i ¼
1
2½o

2ðqT
uxminp1,iquxþqT

uyminp1,iquyþqT
vxminp2,iqvxþqT

vyminp2,iqvy

�2qT
uxminp3,iqvx�2qT

uyminp3,iqvyÞþoðqT
uyminp1,i _qux�qT

vyminp3,i _qux

�qT
uxminp1,i _quyþqT

vxminp3,i _quy�qT
uyminp3,i _qvxþqT

vyminp2,i _qvxþqT
uxminp3,i _qvy

�qT
vxminp3,i _qvyÞþ _q

T
uxminp1,i _quxþ _q

T
uyminp1,i _quyþ _q

T
vxminp2,i _qvxþ _q

T
vyminp2,i _qvy�,

Toutp,i ¼
1
2½o

2ðqT
wxmoutp,iqwxþqT

wymoutp,iqwyÞþoð2qT
wymoutp,i _qwx�2qT

wxmoutp,i _qwyÞ

þ _qT
wxmoutp,i _qwxþ _q

T
wymoutp,i _qwy�: (37)
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Matrices minp,i and moutp,i are given by the integrals:

minp1,i ¼
N

2

Z r0

ri

rAnT
unu dr, minp2,i ¼

N

2

Z r0

ri

rAnT
vnv dr,

minp3,i ¼
N

2

Z r0

ri

rAnT
unv dr, moutp,i ¼

N

2

Z r0

ri

rAnT
wnwdr: (38)

3.2.2. Potential energy

According to Ref. [9], contributions to the potential energy due both to the elastic strain–stress natural of the material
(Ue,i) and to the geometric effect (Ug,i) have been considered:

Ui ¼Ue,iþUg,i: (39)

Shear deformation in the blade is neglected, since each single blade is modeled as an Euler–Bernoulli’s beam. The elastic
energy is thus related to the radial extension (axial deformation for the blade) and flexural deflections:

Ue,i ¼
1

2

XN

j ¼ 1

Z r0

ri

E
A

Dr2
ðsu1,iÞ

2
þ

1

Dr4
ðI2ðs

00
2,iÞ

2
þ I3ðs

00
3,iÞ

2
Þ

� �
dr: (40)

The prime indicates the partial derivative related to the radial coordinates r and E is Young’s modulus. The displacements s

along the inertial axes are linked to the axial, tangential, radial directions by angle c

s1,i ¼ uj,i,

s2,i ¼ vj,icoscþwj,isinc,

s3,i ¼wj,icosc�vj,isinc, (41)

where angle c is a function of the radial coordinate only. Owing to the orthogonally of trigonometric functions, the in-
plane and out-of-plane displacements are decoupled

ðsu1,iÞ
2
¼ ðuuj,iÞ

Tuuj,i,

ðs002,iÞ
2
¼ ðv00j,iÞ

Tv002j,i cos2 cþðw00j,iÞTw00j,i sin2 c,

ðs003,iÞ
2
¼ ðv00j,iÞ

Tv00j,i sin2 cþðw00j,iÞTw00j,i cos2 c: (42)

Prime indicates the partial derivative of the displacements u, v, w. The contributions to the elastic potential energy are
expressed in terms of element generalized coordinates as

Ueinp,i ¼
1
2ðq

T
uxkeinp1,iquxþqT

uykeinp1,iquyþqT
vxkeinp2,iqvxþqT

vykeinp2,iqvyÞ,

Ueoutp,i ¼
1
2ðq

T
wxkeoutp,iqwxþqT

wykeoutp,iqwyÞ: (43)

The stiffness matrices are obtained from the shape functions by the following integrals:

keinp1,i ¼
N

2Dr2

Z r0

ri

EAðnuuÞ
Tnuu dr, keinp2,i ¼

N

2Dr4

Z r0

ri

EIwðn
00
vÞ

Tn00v dr,

keoutp,i ¼
N

2Dr4

Z r0

ri

EIvðn
00
wÞ

Tn00wdr, (44)

where Iv and Iw are the area moments of inertia of the cross-section in circumferential and axial direction v and w in Fig. 3.
The geometric potential energy is caused by the centrifugal forces Fr,i. Assuming that the blades are free to expand

radially at their tips, the thermal effect do not induce any radial load along the axis of blades and force Fr,i can be expressed
as

Fr,i ¼o2

Z r0

r
rAr dr¼o2ProðrÞ: (45)

The restoring force due to centrifugal stress is very important in the case of rotating pendulum. The geometric contribution
to the potential energy can be expressed as

Ug,i ¼
1

2Dr2

XN

i ¼ 1

Z r0

ri

Fr,iðrÞ½vu
2
j,iþwu

2
j,i�dr: (46)

The terms in the potential energy can be split into two independent contributions

Ug,i ¼Uginp,iþUgoutp,i: (47)
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Substituting the shape functions and displacement equations into Eq. (45), the geometric potential energy is

Uginp,i ¼
1
2ðq

T
vxkginpo,iqvxþqT

vykginpo,iqvyÞ,

Ugoutp,i ¼
1
2ðq

T
wxkgoutpo,iqwxþqT

wykgoutpo,iqwyÞ: (48)

The stiffness matrices are given by the integrals of the shape functions:

kginpo,i ¼
N

Dr2

Z r0

ri

ProðnuvÞ
Tnuv dr,

kgoutpo,i ¼
N

Dr2

Z r0

ri

ProðnuwÞ
Tnuw dr: (49)

3.2.3. Element matrices

The equation of motion for the second and higher order harmonics of the array of blades element is the same as the
equations describing the array of blades element in Ref. [9]. The in-plane and out-of-plane coordinates can be assembled in
vectors as

Q inp,i ¼
quxþ iquy

qvxþ iqvy

( )
ð6�1Þ

, Q outp,i ¼ fqwxþ iqwygð4�1Þ (50)

The element mass, gyroscopic, centrifugal and thermal stiffening and stiffness matrices are obtained by using Lagrange’s
equations

Minp,i ¼
minp1,i 0

0 minp2,i

" #
, Moutp,i ¼moutp,i,

Ginp,i ¼ 2i
minp1,i �minp3,i

�minp3,i minp2,i

" #
, Goutp,i ¼ 2imoutp,i,

Mniinp,i ¼ 2i2
minp1,i �minp3,i

�minp3,i minp2,i

" #
, Mnioutp,i ¼ i2moutp,i: (51)

The stresses in the radial and tangential directions can be computed from centrifugal and thermal loading. The stiffness
matrices can be written as

Kinp,i ¼
keinp1,i 0

0 keinp2,i

" #
, Koinp,i ¼

0 0

0 kginpo,i

" #
,

Koutp,i ¼ kww,iþkgoutp,i, Kooutp,i ¼ kgoutpo,i: (52)

The elements are implemented following the same numerical integration procedures as the disc element.
3.3. Disc–array of blades transition element

Even if the displacements within the array are very similar to those of the disc element, different kinds of shape functions
are used for the tangential displacement fields (linear functions for the disc element; cubic functions for the array of blades) and
thus a disc–blades transition element is needed. Two suitable transition elements should then be developed to insure the
compatibility of the displacement fields at the shaft–array of blades (if the blades are connected directly to the shaft) and the
disc–array of blades (if a disc is interposed between the shaft and the blades) interface. Due to the fact that the blades are
seldom connected to the shaft directly, only the disc–array of blades transition element has been developed.

The disc–array of blades transition element is provided with a node 1 contains 4 complex degrees of freedoms for the
flexural behavior which located at the inner radius of the transition element describes the interface between the disc and
array of blades, while a node 2 which has 5 complex degrees of freedom for flexural behavior located at the outer radius of
the transition element. Their matrices have been obtained from those derived for the array of blades element by
constraining the rotation about the tangential directions at node 1.
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4. Examples

4.1. Rotating membrane

A rotating membrane is a very thin disc with negligible flexural stiffness which constitutes a good test case for verifying the
mass, gyroscopic and centrifugal stiffening matrices of the element in out-of-plane modes. In an analytical point of view [2], the
natural frequencies of the membrane are proportional to the spin speed, vanishing at standstill, and the constant of
proportionality does not depend on the geometrical or material characteristics of the structure but only on the mode considered.
To obtain a FEM model approximating a membrane, the thickness and Young’s modulus should be set at a very low value.

The test has been performed using the following data: thickness: 1�10�7 m; outer diameter: 1 m; inner diameter: 0 m;
Young’s modulus: 1�10�5 N/m2; Poisson’s ratio: 0.3; density: 7800 kg/m3. Two models, respectively with four and nine
disc element and one transition element, have been built and each model has been studied by using both the whole set of
generalized coordinates and performing Guyan reduction, which only consider the out-of-plane degrees of freedom as the
master ones. The Campbell diagram is obtained by repeating the computations at three different values of the spin speed,
namely 0, 0.5 and 1 Hz. The results are compared with the analytical results obtained by Southwell [2]. The second- and
third-order harmonics of the disc element are compared with those obtained for 2 and 3 nodal diameters. The ratio o=O
for the second- and third-order harmonics are reported in Table 1.

From the table it follows that the present element performs quite well, proved that a sufficient number of elements are
used. Comparing the results of the two models with 5 elements and 10 elements, it is clear that the accuracy of the
numerical results increases by increasing the number of elements in the model: the numerical results tend to the analytical
solution [2]. If Guyan reduction is used, the results are accurate for the lower order modes, while for higher order modes
the error gets much bigger, which sometimes is unacceptable. The number of elements and of master degrees of freedom
required depends obviously on the orders of the natural frequency to be computed.

Another model has also been built using ANSYS 11.0 code with the same geometric and material parameters in
previously developed FEM and analytical model. Both the centrifugal stiffening (angular velocity inertia) and gyroscopic
effect (Coriolis force) are considered in the ANSYS model. The membrane is meshed with 1078 4-node shell element,
SHELL181. The Campbell diagram is obtained by repeating the computations at five different values of the spin speed,
namely 0, 0.25, 0.5, 0.75 and 1 Hz. The results of the second- and third-order harmonics are compared in Fig. 4.

The figure shows that the natural frequencies of the flexural behavior at standstill are vanishingly small, the first natural
frequency for the second-order harmonics, as an example, is 2.1�10�21 Hz at standstill (present FEM model) and
5.7�10�6 Hz (ANSYS model). The natural frequencies increase linearly with speed according to the Campbell diagram,
which is predicted by the theory. But the present FEM model matches very well the analytical result as already
demonstrated in Table 1, while the ANSYS model under-estimates the whirl frequencies of not only the forward but also
the backward mode, and the errors increase with the increasing speed, which indicates that compared to the analytical
results and the finite element model, the conventional FEM codes yield poor results when gyroscopic terms are accounted
for. Furthermore, the present FEM model requires a much smaller number of element than the ANSYS model (10 VS 1078),
while providing a much better accuracy.
4.2. Constant thickness pierced non-rotating disc

Consider a constant thickness steel disc with the following geometrical and material data: thickness 5.94 mm;
outer diameter 1220 mm; inner diameter 76.2 mm; Young’s modulus 2.1�1011 N/m2; Poisson’s ratio 0.3 and density
Table 1
Ratio o=O, for the first three backward and forward whirl frequencies for the second- and third-order harmonics.

5 el.,. No red. 5 el.,. Gu.red. 10 el.,. No red. 10 el.,. Gu.red. Ref. Min error (%) Max error (%)

Second-order harmonic disc
1FWD 3.5322 3.5339 3.5328 3.5329 3.533 0.0057 0.0255

2FWD 4.9914 4.5022 4.9921 4.9988 4.992 0.0020 0.9811

3FWD 6.3421 6.4655 6.3422 6.4217 6.342 0.0032 1.9473

1BWD 0.4677 0.4695 0.4669 0.4672 0.467 0.0214 0.5353

2BWD �0.9926 �0.9992 �0.9927 �0.9988 �0.992 0.0706 0.7258

3BWD �2.3433 �2.3651 �2.3416 �2.3431 �2.342 0.0171 0.9863

Third-order harmonic disc
1FWD 5.0127 5.0115 5.0133 5.0121 5.013 0.0060 0.0299

2FWD 6.5075 6.5094 6.5073 6.5086 6.507 0.0046 0.0369

3FWD 7.8862 7.9523 7.8857 7.9229 7.884 0.0216 0.8663

1BWD 0.9889 0.9854 0.9986 0.9767 0.998 0.0601 1.2625

2BWD �0.5076 �0.5095 �0.5071 �0.5088 �0.507 0.0197 0.4931

3BWD �1.8861 �1.9522 �1.8847 �1.8972 �1.884 0.0372 3.6200



Table 2
Comparison between the first three natural frequencies for the second- and third-order harmonics, o¼ 0.

Freq. (Hz) No red. Guyan red. ANSYS Min error (%) Max error (%)

Second-order harmonic disc
#1 mode 21.810 21.886 21.765 0.2068 0.5559

#2 mode 143.483 143.597 143.164 0.2228 0.3025

#3 mode 346.984 347.189 345.712 0.3679 0.4272

Third-order harmonic disc
#1 mode 49.632 49.699 49.597 0.0706 0.2057

#2 mode 211.687 211.906 211.466 0.1045 0.2081

#3 mode 448.254 448.775 447.365 0.1987 0.3152

Fig. 4. Comparison of the Campbell diagrams of the second- and third-order harmonics with analytical, FEM and ANSYS model; (a) second-order

harmonics; (b) third-order harmonics; solid line: analytical results; dashed line: FEM results; dash dot line with � : ANSYS results.

Fig. 5. First three order modes of second-order harmonics for ANSYS and DYNROT models, o¼ 0; (a) first-order mode; (b) second-order mode; (c) third-

order mode; solid line: undeformed disc; solid line with *: mode of DYNROT model; dash line with *: mode of ANSYS model.
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7800 kg/m3. As no analytical solutions are available, the comparison is made by using the results obtained using the ANSYS
11.0 code, with 1642 4-node shell elements, SHELL181. The first 30 frequencies for null angular speed are obtained by
using a Block Lanczos technique. The present finite element model is built using one shaft–disc transition element and five
disc elements. The solution is performed both by resorting and not resorting to Guyan reduction, which consider the out-
of-plane degrees of freedom as the master ones. Only the first three natural frequencies for the second- and third-order
harmonics are computed which are reported in Table 2. The first three mode shapes for the second-order harmonics disc
element and ANSYS model are plotted using non-dimensional deformation in Fig. 5.

From all the data above it follows that at null angular speed whatever the reduction method is used or not, not only the
frequencies but also the modes for the higher order harmonics in a case of constant thickness pierced non-rotating disc fits
very well with the maximum error at about 0.5 percent.
4.3. Variable thickness pierced non-rotating disc

Now consider a steel disc whose thickness is variable in radial direction. The cross-section of the disc is illustrated
in Fig. 6. Geometrical and material data are: outer diameter 640 mm; inner diameter 40 mm; Young’s modulus
2.1�1011 N/m2; Poisson’s ratio 0.3 and density 7800 kg/m3. A FEM model with one transition element and nine disc
elements is built, and a comparison model has been set up using ANSYS 11.0 with 4684 eight node three-dimensional
structural solid element, SOLID45. The first three frequencies at null angular speed of the second-order harmonics are
compared in Table 3. The mode shapes are plotted using non-dimensional deformation in Fig. 7.

The precision obtained is remarkable. For the lowest three frequencies of the second-order harmonics element the
maximum error is about 1 percent, which means for the disc if the thickness in radial direction is changed, the higher order
harmonics element is also perfectly suitable. But if the thickness in radial direction is nonlinear, it is clear that more disc
elements which are shorter in radial direction must be used to approximate the thickness changing. These tests on non-
rotating systems show that the stiffness matrix, not tested in the example on the membrane, is essentially correct (or at
least, yields the same results as commercial FEM codes).
4.4. Variable thickness pierced rotating disc

Consider the same steel disc studied in Example 4.3, but now taking into account rotation, with a speed range between
0 and 100 Hz. The mathematical model is the same as seen already, but here a further model in which the gyroscopic terms
are neglected is studied. The results are compared with ANSYS 11.0 in Fig. 8. The frequencies computed using DYNROT and
ANSYS codes are in accordance at standstill. When considering rotation, DYNROT model still agrees with ANSYS model if
the gyroscopic effect is neglected. This means that in both models only centrifugal stiffening is taken into consideration.

If all the contributions in DYNROT model are accounted for, ANSYS code under-estimates the whirl frequencies of both
forward and backward mode and these errors increase with increasing speed. It proves that the conventional FEM codes
make worse approximation and consequently reach worse accuracy than the present one when the gyroscopic effect is
accounted for, even though the ANSYS model is meshed with much more elements than the present DYNROT model (4684
Vs 10).
Fig. 6. Cross-section of the pierced non-rotating disc (unit: mm).

Table 3
Comparison between the first three nature frequencies for second-order harmonics, o¼ 0.

Freq. (Hz) 10 element no reduction ANSYS 11.0 Error (%)

Second-order harmonic disc
#1 mode 221.0498 218.52 1.14

#2 mode 1279.8227 1271 0.61

#3 mode 3094.0415 3098 0.13



Fig. 7. First three order mode of second-order harmonics for ANSYS and DYNROT models, o¼ 0; (a) first-order mode; (b) second-order mode; (c) third-

order mode; solid line: undeformed disc; solid line with � mode of DYNROT model; dash line with �: mode of ANSYS model.

Fig. 8. First forward and backward frequencies as functions of the speed for the plate in DYNROT and ANSYS model.
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4.5. Rotating pendulum

A rotating pendulum is a limit case for testing the inertial and centrifugal stiffening matrices of the present array of
blades element. The natural frequencies of the rotating pendulum are related to the spinning speed by the relationships

l1 ¼o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þr=l

q
, l2 ¼o

ffiffiffiffiffiffi
r=l

q
, (53)

where l is the length of the pendulum and r is the radius of the disc.
The disc at which the pendulum is attached is modeled using two beam elements for the shaft constrained at both ends

by rigid supports, one shaft–disc transition element, one disc element, and all these elements being very stiff. A disc–array
of blades transition element and nine array of blades elements are added to model the pendulum. All geometrical and
material data come from Ref. [9]. The computation is performed at a speed 100 rad/s, at which the natural frequencies of
the in-plane and out-of-plane oscillations of the pendulum computed using Eq. (53) are 100 and 141.41 rad/s, respectively.
The results for the second-order harmonic components, seen as the flexural oscillations of the row corresponding to the
in-plane and out-of-plane oscillations of all pendulums, have been reported in Table 4. Each oscillation mode generates
two flexural modes, which are backward and forward, respectively.



Fig. 9. Geometric structure of the model built both in ANSYS and DYNROT (unit: mm).

Table 5
Disc with array of blades: comparison between the first three natural frequencies for the second-order harmonics, o¼ 0.

Freq. (Hz) No red. Guyan red. ANSYS Min error (%) Max error (%)

Second-order harmonic array of blades
#1 mode 128.321 129.007 128.001 0.2500 0.7859

#2 mode 453.282 457.186 451.558 0.3818 1.2464

#3 mode 804.228 796.218 813.22 1.1057 2.0907

Table 4

Rotating pendulum, flexural natural frequencies compared through current model and theory, o¼ 100 rad=s.

DYNROT model Analytical result Error (%)

Second-order harmonic array of blades
#1 in-plane (rad/s) FWD 201.77 200 0.88

BWD 0.177 0 –

#1 out-of-plane (rad/s) FWD 243.19 241.421 0.73

BWD �4.319 �4.142 4.09
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The natural frequencies are also computed at other values of the spin speed, showing a linear dependence as predicted
by the theory. The present model yields results which are close to the correct ones.
4.6. Shaft with flexible disc and blades

A finite element model with a shaft and a flexible disc and four prismatic blades are considered to verify the behavior at
standstill. A model with a cylinder and four beams is also set up using ANSYS 11.0 which is meshed with 4054 eight node
three-dimensional structural solid element, SOLID45, to compare the results. The geometric configuration of the rotor
structure is given in Fig. 9. The material parameters are: density 7800 kg/m3, Poisson’s ratio 0.3, Young’s modulus
2.1�1011 N/m2.

This model is only used to verify the modes related to second and higher order harmonics of the array of blades. The
DYNROT model is made of two beam elements for the shaft, whose ends are constraint by rigid supports, one shaft–disc
transition element, one disc element, a disc–array of blades transition element and nine array of blades elements.
The computation is performed both by using all generalized coordinates and using Guyan reduction, which determines
the out-of-plane degrees of freedoms as the master degrees of freedom. Only the first three natural frequencies for the
second-order harmonics are computed and compared with the results reported in Table 5. The first three mode shapes for
the second-order harmonics element and ANSYS model and the compare of mode shape using non-dimensional
deformation of each blade are plotted in Fig. 10.

It indicates that whatever the reduction method is used or not, the frequencies for the second and higher order
harmonics in a case of shaft with flexible disc and prismatic blades fit very well with a maximum error of no more than



Fig. 10. First three order modes of second-order harmonics for ANSYS and DYNROT models, o¼ 0; (1a), (2a), (3a): first-, second- and third-order mode of

bladed disc of second-order harmonics; (1b), (2b), (3b) non-dimensional deformation of a single blade in radial direction of first-, second- and third-order

mode; solid line with � : undeformed blades; solid line with 3: blade mode of DYNROT model; dash line with 3: blade mode of ANSYS model.

G. Genta et al. / Journal of Sound and Vibration 329 (2010) 5289–5306 5305
2 percent. Also the mode shapes for higher order harmonics of DYNROT model are in good agreement with that of ANSYS
though some of the blades have 1801 phase difference. But as the disc has been completely constrained, the dynamics of
each blade is decoupled from the others, which means the phase difference of some blades in DYNROT model relative to
ANSYS modes is not relevant.
5. Conclusions

Two finite elements aimed at modeling discs and arrays of blades for the studying of their flexural behavior have been
developed. Both the displacement field within the disc element and array of blades are approximated by trigonometrical
expansion along the tangential direction and a polynomial expansion along the radius. Only the second and higher order
harmonics have been taken into account as they are uncoupled from the dynamic behavior of the rotor.

The formulation for both elements have been obtained using complex coordinates following a Lagrangian approach
which accounts for gyroscopic effects and stress stiffening. The elements have been implemented in the existing FEM code
DYNROT. For disc element a constant stress contribution has been considered, for example due to the thermal stresses, and
assumed as a part proportional to the square of the spin speed. However, for blade array elements, the constant stress
contribution has not been considered as the blades are assumed to be unconstrained in the radial direction at their tip and
thermal gradient is not considered in array of blades element.

Since the modes of the disc here studied are uncoupled with the modes of the shaft, the disc element has two nodes, one
at the inner radius of the element and the other at the outer radius. Also the array of blades element is provided with two
nodes, being located at the element inner and outer radii. Two transition elements have been developed to connect the disc
element with beam element used to model the shaft and array of blades element with disc element, respectively. It is
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assumed that the discs are attached to the outer radius of the shaft and blades are clamped to the disc at the inner radius of
the array.

A number of tests have been carried out to verify the accuracy of the two elements. For the disc element, a membrane
has first been studied to compare the analytical results with the natural frequencies obtained by the current disc element
model and ANSYS code.

A very interesting result is that, while the present element formulation yields results that coincide with the analytical
solutions, the results obtained through ANSYS are different, and in particular yield a value of the natural frequencies that is
lower than the analytical one. Then several cases are used to compare the natural frequencies considering the different
geometric structure of discs modeled using the present disc element and a commercial FEM code, ANSYS 11.0. The results
show the disc element performs with a good accuracy, even when using a small number of degrees of freedom.

Again, when the Coriolis terms are included the ANSYS model yields results that are different from the present ones
while the results obtained neglecting Coriolis terms coincide. From the results obtained for the rotating membrane,
apparently the formulation for the gyroscopic term in ANSYS yields a worse approximation than the present one.

For the array of blades element, both the analytical results obtained using a rotating pendulum and the numerical
results achieved by rotating untwisted blades connected to a rigid disc and a rigid shaft have been compared to those given
by the array of blades element, showing in both cases a good agreement. In addition, the present finite element model
requires a smaller number of degrees of freedom than conventional FEM models, while still preserving its accuracy and, in
some cases, yielding much more accurate results.
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